

operties - 2	2			Tayl
Species	Boil °C	Melt °C	Formula	Mol Wt
Nitrogen	-196	- 210	N2	28
Oxygen	- 183	- 219	02	32
Methane	-162	- 182	CH4	16
Ethane	- 89	- 183	C2H6	30
Propane	- 42	- 188	C3H8	44
n-Butane	0	-138	C4H10	58
n-Pentane	36	- 130	C5H12	72
Water	100	0	H2O	18

FLNG Marine Environment Challenges - Technip

11

Mechanical

- · Offloading LNG between two vessels on the high seas
- · Importing large quantities of high pressure feed gas onto a floating facility
- Equipment and piping loads generated by motion
- LNG tank sloshing over 25 years without dry docking
- Maintenance
- Marine environment salt & humidity replace aluminium by stainless & Ni steels

Process

- · Gas processing facilities to be adapted to marine environment
- · Compact design weight and volume
- · Designing for motion compared to static onshore plan
- Proposed Liquefaction Development
- Technip + Air Products: <u>Nitrogen based Tricycle</u>, using coil wound heat exchanger (CWHE) for strength, safety (any leak inside pressure vessel) & performance
 FLNG Risks 131105

FLNG Process Schematic STING Methane rich gas Suphur LNG Storage Field LNG ding 14272, 114 Pipel Acid G NZ-Rejects Rem NGL Mercury Dehydration Liquelaction LNG -Train Religoration Loos Fractionation LPS USIN' Production - Table Technip 12 FLNG Risks 131105

LNG Carriers Storage & Handling Options

13

Storage

- Moss Spherical Tanks
 - Initially 9% nickel-steel, but subsequently 29>57mm thick aluminium
 - Insulated by glass fibre, aluminium foil & expansion foams
 - Overtaken by Membrane, but use for SBM double tanker FLNG with Linde train
- Membrane Tanks
 - No. 96: Dual layer 0.7mm Invar (36% Ni steel) in plywood boxes filled with perlite
 - Mark III: <u>1.2mm low temp. stainless</u> + fibreglass reinforced polyurethane foam with Triplex plastic secondary barrier
- Temperature Control
 - Latent heat absorption from low boil-off rates (~0.15%>0.10%/day) maintains LNG temperature
 - <u>Boil-off gas either burnt</u> to generate power &/or steam <u>or re-liquefied</u> (newer vessels)

FLNG Risks 131105

FLNG Storage & Handling Options - 2

Concept: Dual floating cryogenic LNG offloading hoses & dual cryogenic boil-off return hoses

DNV has qualified Technip hose for Amplitude LNG Loading System (ALLS) at GdF site

Also Trelleborg-Saipem offshore development

FLNG Risks 131105

H" 20 a proprio l'Autrin par

Layout & Arrangements

- · Failure to locate by risk & consequence
- Inadequate protective barriers, evacuation & rescue systems
- Congestion & lack of venting &/or pressure relief facilities .
- Mechanical
 - Risk level of process selected
 - Inadequate component strength
 - Material degradation failures in service or brittle fracture during LNG spillage
 - · Connection leaks process plant or offloading
- Control
 - Electrical & electronic system failures initial & response
 - Procedure & communication system deficiencies
 - Operator errors initial & response
- External
 - Vessel impacts
 - Terrorist action

```
Piper Alpha – many above applied & 165 died > Safety Cases & integrated approach
FLNG Risks 131105
```

16

Plant & Process **Combustion & Explosion Mechanisms**

19

- Deflagration feasible with NG
 - Subsonic flame propagation (<100m/s vs ~300m/s) & low overpressure (eg. <0.5 bar)
 - Combustion propagates as flame front moves forward through the gas mixture
 - Requires some congestion to be sustained (eg. pipework or trees)
 - Partial confinement & many obstacles can cause turbulent flow & eddies, which may accelerate flame from subsonic to supersonic & change deflagration to detonation
- Detonation requires containment or long flame path with NG
 - Supersonic flame propagation (up to 2,000m/s) & high overpressure (up to 20 bar)
 - Pressure shock wave compresses unburnt gas ahead of wave to temperature above auto-ignition temperature & detonation occurs
 - Effects of a detonation are usually devastating
 - Deflagration to Detonation Transition (DDT) features in major losses inc:-
 - 1974 cyclohexane VCE from pipe rupture in Flixborough chemical plant
 - 1989 propane rich VCE from leaking pipeline in Russia
 - 2005 oil spillage VCE at Buncefield Oil Storage Terminal

FLNG Risks 131105

FLNG Risks 131105

LNG Carriers & FLNG Hazard Mechanism - RPT DIUSTING Rapid Phase Transformation - Modelling by ioMosaic Large hole above water & tank 98% full · LNG discharge onto water RPT near outside of hull & pool forms Large hole below water & tank 98% full Initially LNG discharges into water RPT near outside of hull & pool forms · Then some water into tank Large hole just below water but tank 25% full · Water enters tank & mix with LNG RPT inside tank & possibly severe tank damage Water freezes in tank, after heating LNG The hazard potential of RPT is very localised, but might be severe RPT more likely if LNG contains ethane & propane 20

10

21

- Practical Tests
 - · Fire & explosion tests by BG/GL-Noble Denton at Spadeadam:-
 - Explosion severity increases from methane to propane, ethane & ethylene
 - LPG extraction & refrigeration may introduce up to ~ 70% of FLNG process risk
 - LNG onto water tests by GdF, Shell Maplin Sands & Lawrence Livermore in USA
- Computational Fluid Dynamics
 - GexCon '<u>FLACS</u>' Flame Acceleration Software used to model <u>plant design & major</u> <u>incidents</u>, inc. Piper Alpha & Petrobras 36 platforms & Buncefield
 - DNV '<u>PHAST</u>' modelling of onshore & <u>on water LNG leaks & fires</u>, inc. flammable atmosphere distances (if no ignition) for different hole sizes above & below water line, eg. ~<u>900m</u> for 750mm hole above water line or up to ~<u>3km</u> for 1500mm terrorist hole

FLNG Risks 131105

